De toekomst voorspellen met tijdreeksen

De kristallen bol van bedrijven en hun managers

Opiniestuk door professor Kristof Stouthuysen en doctoraatsstudente Emma Willems

Traditionele tijdreeksanalyses en voorspellingsmethoden zijn niet nieuw. De laatste tijd hebben bedrijven als Google en Facebook echter geïnvesteerd in het ontwikkelen van tijdreeksmodellen die traditionele technieken combineren met Machine Learning (ML). Wat is de reden dat Big Tech bedrijven plots op zoek zijn naar manieren om de voorspellingstechnieken te optimaliseren? En waarom zouden alle bedrijven en hun managers zich moeten bezighouden met deze nieuwe voorspellingstechnieken?

De COVID-19 pandemie als katalysator voor betere prognoses

Men zou kunnen stellen dat wetenschappers superkrachten creëren in hun labo's. Als de managers van vandaag maar één superkracht zouden moeten kiezen, dan zou dat de mogelijkheid zijn om de toekomst te voorspellen. De mogelijkheid om nauwkeurig een reeks te voorspellen? is van cruciaal belang in veel industrieën en kan worden gebruikt voor verschillende toepassingen zoals beursanalyse, patroonherkenning, voorspelling van aardbevingen, economische voorspellingen, censusanalyse, enzovoort.

Tegelijkertijd heeft de COVID-19 pandemie de tekortkomingen van de traditionele planningsaanpak blootgelegd, met de nadruk op de rigiditeit van kwartaal- en jaarplanningen op specifieke momenten in de tijd. Het is nu duidelijk dat bedrijven de technologie en vaardigheden nodig hebben die hen flexibeler maken en hen in staat stellen om dynamische plannen en voorspellingen uit te voeren, gebaseerd op meerdere inputs en outputs, en dit op een continue basis.

Wat is een tijdreeks?

Een tijdreeks is eenvoudigweg een opeenvolging van waarnemingen van dezelfde variabele die op regelmatige tijdstippen worden geregistreerd. Voorbeelden van tijdreeksen zijn overal te vinden: van bbp-groei, tot windsnelheid op een specifieke plaats, tot de evolutie van de verkoopcijfers - allemaal variabelen die in de loop van de tijd worden gemeten.

De meeste bedrijven vertrouwen op tijdreeksanalyse om voorspellingen te maken - ze proberen de data te modelleren en patronen te vinden in de historische gegevens. Deze patronen kunnen wijzen op een trend, of op seizoensgebonden patronen – bijvoorbeeld, wanneer de verkoop in december een piek vertoont. Met tijdreeksen kan je ook proberen te voorspellen hoe een bepaalde verandering vandaag de toekomstige waarden van een bepaalde variabele zal beïnvloeden. Je kan bijvoorbeeld proberen te voorspellen hoe de financiële beperkingen van bedrijven tijdens deze crisis op lange termijn invloed zullen hebben op de angst van werknemers voor banenverlies in de komende jaren. En terwijl tijdreeksen een gevestigde theoretische basis hebben in de statistiek en de dynamische systeemtheorie, hebben ze met de huidige pandemie veel aandacht gekregen.

Hoe Big Tech-firma’s het voorspellen van klassieke tijdreeksen veranderen

In de eerste week van december 2020 heeft Facebook, in samenwerking met Stanford University, NeuralProphet uitgebracht: een nieuwe open source Python-bibliotheek voor tijdreeksmodellering. Een paar dagen later publiceerde ook Google een nieuw open source AI-algoritme, voor het voorspellen van tijdreeksen met behulp van AutoML. En hoewel er enkele verschillen zijn tussen de twee technieken, hebben ze iets gemeenschappelijk dat de manier waarop bedrijven de toekomst kunnen voorspellen aanzienlijk zal verbeteren: beide technieken zijn gebaseerd op deep learning neurale netwerken.

Ten eerste kunnen dergelijke deep learning neurale netwerken automatisch functies leren en extraheren uit ruwe en onvolmaakte gegevens. Dit kan heel nuttig zijn omdat tijdreeksen in realiteit vaak moeilijkheden ondervinden zoals onregelmatige tijdsstructuren, ontbrekende waarden, zware ruis, en complexe onderlinge relaties tussen meerdere variabelen - wat beperkingen stelt aan de klassieke voorspellingsmethoden. Gelukkig hebben neurale netwerken bewezen robuust te zijn voor ruis in invoergegevens en kunnen ze zelfs het leren en voorspellen ondersteunen bij ontbrekende waarden.

Ten tweede ondersteunen deep learning algoritmen meerdere in- en outputs. Een univariate tijdreeks bevat (zoals de naam al aangeeft) slechts één tijdsafhankelijke variabele. Als we bijvoorbeeld het energieverbruik op een specifieke locatie willen voorspellen, zal de voorspelling in een univariaat tijdreeksenscenario uitsluitend gebaseerd zijn op de historische verbruikspatronen. Wanneer we deze voorspelling willen verbeteren met andere variabelen, zoals temperatuurwaarden, luchtvochtigheid …, wordt dit een multivariate tijdreeks. Neurale netwerken kunnen niet alleen meerdere inputs ondersteunen om voorspellingen te doen voor complexere tijdreeksen, maar ze laten ons zelfs toe om meerdere outputs te genereren in een meerstappenprognose, waarbij voorspellingen nodig zijn voor korte, middellange of lange horizonten.

Ten derde zijn deep learning netwerken ook goed in het extraheren van patronen in invoergegevens die zich over relatief lange reeksen uitstrekken. Denk bijvoorbeeld aan een film: wat er in de huidige frame gebeurt is sterk afhankelijk van wat er in het vorige frame gebeurde. Geavanceerde neurale netwerken kunnen leren wat belangrijk is uit het verleden en hoelang dit belangrijk blijft voor de toekomst. Deze benadering kan bijvoorbeeld door bedrijven worden gebruikt om modellen te bouwen die wisselkoersen voorspellen gebruik makend van het idee dat gedrag en prijspatronen uit het verleden invloed kunnen hebben op valutabewegingen en kunnen worden gebruikt om toekomstig prijsgedrag en -patronen te voorspellen.

Wat zit er in voor de bedrijven en managers van vandaag?

Terwijl in de afgelopen jaren veel onderzoek is geïnvesteerd in ML voor het voorspellen van tijdreeksen, waren de resultaten altijd beperkt. Deze keer lijkt het anders. Omdat zowel Google als Facebook grote hoeveelheden data bezitten, zijn ze erin geslaagd om algoritmes te ontwikkelen die zeer accuraat zijn in hun voorspellingen. Google heeft bijvoorbeeld statistieken geleverd over hoe het beter heeft gepresteerd dan 92% van de manuele modellen.

Een ander groot voordeel is dat deze nieuwe algoritmen erin geslaagd zijn om complexe tijdreeks problemen veel gemakkelijker op te bouwen en te voorspellen. Veel van de vorige voorspellingsmodellen hadden immers veel menselijke inspanning en expertkennis nodig om het model te construeren en te verfijnen, waardoor het gebruik ervan in de praktijk beperkt werd. Zowel het Facebook- als het Google-model zijn sterk geautomatiseerd, zodat bedrijven en hun managers vooral kunnen focussen op het stellen van de juiste bedrijfsvraag, het voeden van het model met inputgegevens en het interpreteren van de resultaten.

Een laatste voordeel is dat dit alles tegen heel lage kosten gebeurt, omdat de algoritmes open source zijn en dus door iedereen gebruikt kunnen worden, door zowel grotere als kleinere bedrijven. Zo wordt geavanceerde technologie meer dan ooit voor iedereen toegankelijk! We zullen alleen een hoog niveau van ondernemerschap moeten tonen om het te omarmen en op een verantwoorde manier te gebruiken.

Centre for Financial Leadership & Digital Transformation

Het Centre for Financial Leadership & Digital Transformation voert actiegericht onderzoek naar de financiële functie van de toekomst. Het dient ook als kennisplatform. Financiële leiders die zowel een competitieve als efficiënte financiële afdeling of accounting kantoor willen uitbouwen, de technologische dimensie willen omarmen en op de hoogte willen blijven van de meest recente technologische ontwikkelingen die van invloed zijn op de financiële functie, kunnen genieten van ons unieke kennisplatform en onderzoek. Meer informatie over dit centre!

Gerelateerd nieuws

  1. Wat kunnen onze bedrijven en AI betekenen voor de klimaatstrijd?

    Datum: 01-02-2021
    Categorie: Opiniestukken
    In het klimaatakkoord van Parijs hebben meer dan 100 landen, waaronder België, zich geëngageerd om tegen 2050 de netto uitstoot van broeikasgassen te herleiden tot nul. Hoewel de nieuwe Amerikaanse president Joe Biden klimaatverandering terug op de politieke agenda zet, zal het al dan niet halen van deze doelstelling echter voornamelijk afhangen van de krachtdadigheid van de bedrijfswereld. Volgens professor Kristof Stouthuysen is een doorgedreven gebruik van artificiële intelligentie de sleutel om onze bedrijven te helpen sneller klimaatneutraal te worden.
  2. Voetbal, M&A voorspellingen en Machine Learning

    Datum: 05-01-2021
    Categorie: Opiniestukken
    Momenteel worden robotgestuurde procesautomatiseringen al vaak toegepast in financiële afdelingen om de werknemers van monotone taken te verlossen. Echter, ondanks het bloeiende vakgebied van artificiële intelligentie (AI) en machine learning (ML), zijn financiële applicaties van deze laatste technieken vrij schaars. Door een connectie te maken met een scheidsrechter die al dan niet een goal afkeurt, trachten Lennert Van der Schraelen, Kristof Stouthuysen en Mathieu Luypaert een interessante toepassing tot stand te brengen betreffende fusies en overnames (M&A).
Alle artikels